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ABSTRACT

A cikk keretein beliil korivalaku gorbe rudak
stabilitasat vizsgaljuk, amennyiben a megtamasztds nem
szimmetrikusan torvténik. A rud az egyik végén csukloval
tamasztott, a masik vegén befalazott. Terhelése egy
radialis iranyu koncentralt erébdl all. A geometriailag
nemlinearis mechanikai modell stabilitdasi egyenletei a
virtualis munka elvbdl keriiltek levezetésre, megoldasuk
zart  alakban  felirhato. Az  egyensulyi  utak
feltérkeépezésével megallapithato a legkisebb limit ponti
kritikus erd, ami a rud stabilitasanak elvesztéséhez

vezethet. Az uj modell eredményeit kereskedelmi
végeselemes szoftver szamitdsaival —dsszevetve o

egyezést tapasztaltunk.

1. INTRODUCTION

Arches are frequently utilized in various architectural
designs, serving as essential elements in structures like
roofs, bridges, and openings. Their distinctive curved
shape offers several advantages, notably in distributing
weight evenly and effectively managing mechanical
loads. Nevertheless, when arches endure a compressive
load, they can become prone to instability and it is crucial
to account for the possibility of limit point buckling in
arch design to guarantee structural stability and safety
[1]. Buckling of arches has been widely studied, resulting
in a rich body of literature that provides key insights into
the stability of arch structures, from early research to
present-day. According to certain numerical studies,
including those by Yang & Shieh [2], Kuo & Yang [3],
the position of the radial load may influence the nonlinear
equilibrium and buckling load significantly. Numerous
studies have primarily focused on the classical and
nonlinear buckling of arches with symmetric boundary
conditions, particularly those with pinned-pinned or
fixed-fixed ends — see, e.g., [4-7]. Exact analytical
solutions for limit point, bifurcation buckling, and post-
buckling behaviour of the shallow arches with symmetric
boundary conditions under uniform radial and central
concentrated loads have been investigated in details in
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the literature. Recent studies on arches with
unsymmetrical end supports have revealed significant
differences in their nonlinear behaviour compared to
arches with symmetric conditions. Likewise, paper [8]
examined the in-plane nonlinear stability of pinned-fixed
shallow arches under arbitrary concentrated loads and
found that these structures exhibit multiple stable and
unstable equilibria, buckling through limit point
instability rather than bifurcation. This contrasts with
fixed-fixed or pinned-pinned arches, which may buckle
in a bifurcation mode [5,7]. Nonlinear elastic analysis
and buckling of pinned-fixed arches under uniformly
distributed radial loads were also explored in [9]. In most
articles, the effect of bending moment on the membrane
strain is not incorporated, but it might be necessary to
improve the model accuracy [10].

Overall, most studies assume identical end supports
and overlook the impact of bending moments on
membrane strain when analyzing the buckling behaviour
of arches. Therefore, further investigation into the
stability of such members is needed to provide a more
comprehensive  understanding of their buckling
behaviour. This article focuses on the in-plane buckling
of homogeneous fixed-pinned shallow arches under
radial concentrated load. The equilibrium equations are
derived using the principle of virtual work, with account
on the bending moment's effect on membrane strain. The
equations are solved in closed form. The novel model
introduced can identify the limit points on the
equilibrium path for a selected geometry, material and
load position. The solutions are validated through
comparisons with finite element simulations.
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2. MECHANICAL MODEL

Figure 1 The geometry, loading and support conditions
of the one-dimensional model

We shall consider a fixed-pinned arch as it is shown
in Figure 1. The cross-sectional coordinates are 7; { and
the axis & coincides with the circumferential direction.
The length of the arch is S, the included angle is 260, the
initial radius of curvature is R, and ¢ and s are the angle
and arc coordinates. The load is applied at the angle
coordinate @ = [—0; 0]. If a = 0, it is a limit case with
the load being at the symmetry axis of the arch. It is
assumed that the behaviour of the material is linearly
elastic and isotropic.

The membrane strain at an arbitrary point on the
centroidal axis ({ = 0) is given as [11]

_du w1, dwy
gm_ds+R+2( ds) ' O

Where u and w are the axial and radial centroidal axis
. . . dw. 5 .
displacements respectively, the nonlinear term (— d—‘:)z is
introduced to account for rotations and it contributes as
the cause of nonlinearity. The axial force N and the

bending moment M can be represented as follows [10]
using the Hooke law:

Io (du  d?w
N = At — 2 (re =52 @)
a? M
M=l (52+2), N=Akpn—2 3)

with I, as the E-weighted moment of inertia to major
principal axis 1 and and A, as the E-weighted area of the
cross-section:
I, = [E{*dA, Ae=fAEdA. 4)
Using the principle of virtual work, the nonlinear pre-
buckling equilibrium configuration can be established.
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For mathematical simplification, we now introduce W =

%andU =% that are dimensionless normal and
circumferential ~displacements. Using fundamental

equations (1)—(4), the following equilibrium equations
can be found [7]:

e =0, W'+ 2+ DW" +12W =2 -1 (5)

2 _ 4 _ AeR® _R® . 2 _ 5%
K=1—puem, p==—=5A=Vu6*=2 (6

In which 4 is the slenderness parameter of the arch [11]
and r is the radius of gyration of the cross section about
its major principal axis 7. The boundary and
discontinuity conditions for the considered arch are as
follows:

Wlp=—g = Wll(p:—e =Wlp=p = Wultp=9 =0,

Wl(p:—a. = Wl(p:+a ’ W,|¢:—a = WI|<p=+oc ,

Wulq):—a = W”|¢=+a , _W”’|<p=—a + Wmlrp=+a =
2Q

% (7

Here Q is a dimensionless load defined by

__qR%0
T oan,

®)

When we focus, example, on that arch part which is on
the right side of the load position (¢ € [a, 6]), the
general solution satisfying Eq (5), is

2_
W, (@) = 555+ 4, cos (@) + A, sin(p) —

KZ

%3 cos(ip) — % sin(s). ©)

The constants 4; can be found by recalling boundary and
discontinuity conditions (7).

Since the membrane strain is constant, a nonlinear
relationship can be set as

L2 em(@)de = [S[U" +W + 0.5(W")?]dg —
2ue, = B; Q* + B,Q + Bs. (10)
The constants B,, B, and B; -- which are functions of «,
6, A and p -- can be calculated in closed form based on
their definitions. Evaluation of Eq. (10) makes it possible
to find the equilibrium path of the arch and thus, the limit
points which are related to buckling.
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3. COMPUTATIONAL RESULTS
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Figure 2 Lowest critical load in terms of 6

Figure 2 depicts the relationship between

dimensionless buckling loads and the semi-vertex angle
6 for three various load positions. The results reveal that
when the load position factor is negative, the critical load
increases as 0 increases, indicating that arches with
greater 6 can sustain higher loads. Conversely, for a
strictly positive load position factor, the critical load
initially rises but begins to decrease once 8 approaches
to approximately 0.8/ rad. Additionally, when the load is
applied between the crown and the fixed end, the
buckling load is significantly higher compared to when
the load is located between the crown and the pinned end.
The plotted curves also shift leftward as the load position
factor a/6 transitions from positive to negative, meaning
buckling may occur at smaller included angles. The
difference in critical load is substantial, with the relative
change between a/6 = —0.2 and a/6 = 0.2 ranging
between 30.8% and 35.14%. It is important to note that,
under the considered geometric parameters and these
load positions, the critical buckling load for pinned-fixed
members consistently falls between the values for
pinned-pinned [10] and fixed-fixed supports [5].

The effects of the load position on the equilibrium
path (number of limit points and nonlinear equilibrium
branches) are illustrated in Figure 3 for three samples.
The load position a/8 clearly influences the nonlinear
equilibrium and buckling behaviour of the arches. As the
load position shifts from the left side of the arch crown
(a/0 = —0.2) to the right (a/0 = 0and a/0 =0.2 ),
the number of limit points decreases from four (two
upper limit points and two lower limit points) to two.
Similarly, the equilibrium branches reduce from five (one
primary stable branch, three unstable branches, and a
remote stable branch) to three (two stable branches with
an unstable branch between them).
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Figure 3 Load in terms of a dimensionless strain U

4. FEM RESULTS

Table 1 presents a comparison between the proposed
model and the results obtained with the commercial finite
element (FEM) software Abaqus. For the FEM analysis,
a one-dimensional B2/ type element was employed for
the discretization, with a total of 60 elements to map the
arch. This number was found to be sufficient to ensure
converged results. The Static/Riks step was utilized with
nonlinear geometry enabled to trace the equilibrium
paths. The first upper limit point of the equilibrium path
is obtained when the force reaches its local maximum and
then starts to decrease under load control. Accordingly,
this maximum force is the lowest nonlinear buckling load
sought. The cross-section used was a uniform, doubly
symmetric I cross-section with an area of 4588 mm? and
a second moment of inertia being 54255295 mm*. The
Young’s modulus was 2/0 GPa throughout, meaning
homogeneous material distribution. As shown in Table 1,
the correlation is really good between the two different
approaches.

Table 1 Validation of the results with FEM

Q (new model) FEM

a/l Sr=80,60 =04,1=16
-0.2 6.03 5.85
0 5.65 5.41
0.2 4.01 3.90

Furthermore, Figures 4 and 5 illustrate the pre-
buckling shape of the arch when the critical buckling load
in [N] is applied when a /8 = —0.2 and 0.2, respectively.
To determine the corresponding dimensionless loads in
the above table, the definition of Eq. (8) was applied.
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Figure 4 Critical load when a /0 = —0.2
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Figure 5 Critical load when a /0 = 0.2

5. SUMMARY

This article investigates the stability and in-plane
behaviour of fixed-pinned shallow circular arches using
a one-dimensional beam model based on the Euler-
Bernoulli theory. It turns out that not only the geometry
but also the load position affects significantly the lowest

buckling loads.

The equilibrium path also strongly

depends on these factors. Comparative studies with finite
element analyses validate the accuracy of the model.
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