
 
9. ábra A nyomatéki görbe z=30, 0,1 mm osztáshiba és 

II. forgásirány esetén 
 
5. táblázat Az átfogatási nyomaték referenciaértékektől 
eltérő értékeinek maximuma, átlaga és minimuma 0,1 

mm osztáshiba esetén, z=30 fogszámú 
fogaskerékpárokra 

 Maximum 
[Nmm] 

Átlag 
[Nmm] 

Minimum 
[Nmm] 

Csökkentett 
osztás 

1,3604 1,1121 0,7181 

Növelt osztás 0,0333 0,0207 0,0022 
 

 
10. ábra A nyomatéki görbe z=50, 0,1 mm osztáshiba és 

I. forgásirány esetén 
 

 

 
11. ábra A nyomatéki görbe z=50, 0,1 mm osztáshiba és 

II. forgásirány esetén 
 

A z=50 fogszám és a 0,1 mm-es osztáshiba esetében is 
ugyanazt tapasztaljuk, mint a hasonló fogszámú és kisebb 
osztáshibás méréseknél. Annyi a különbség ismételten, 
hogy a hiba növekedésével a referenciaértékektől eltérő 
értékek különbsége is nagyobb a referenciaértékekhez 
képest, mint kisebb hiba esetén. Ezeket az értékeket a 6. 
táblázatban foglaltuk össze. A mérések nyomatékgörbéit 
a 10. és 11. ábrák mutatják be. 

 
6. táblázat Az átfogatási nyomaték referenciaértékektől 
eltérő értékeinek maximuma, átlaga és minimuma 0,1 

mm osztáshiba esetén, z=50 fogszámú 
fogaskerékpárokra 

 Maximum 
[Nmm] 

Átlag 
[Nmm] 

Minimum 
[Nmm] 

Csökkentett 
osztás 

4,9896 3,3206 1,6824 

Növelt osztás 0,0736 0,0449 0,0111 
 

6. ÖSSZEFOGLALÁS 
 
Ebben a cikkben kisméretű műanyag fogaskerekek 

osztáshibáit vizsgáltuk az átforgatási nyomaték 
mérésével. Ehhez olyan fogaskereket gyártottunk, 
melyek egyik foga tangenciális irányban el lett forgatva. 
A mérések azt mutatták, hogy az osztás csökkenésével az 
átforgatási nyomaték növekszik, az osztás növekedésével 
pedig csökken. 

 
7. SUMMARY 

 
In this article, the pitch faults of small plastic gears were 
analysed by measuring the drag torque. For this purpose, 
gears were manufactured with one tooth slightly moved 
in the tangential direction. The measurements showed 
that as the pitch decreases, the torque increases and as the 
pitch increases, the torque decreases. 
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THE INFLUENCE OF NON-SYMMETRICAL SUPPORTS ON 

THE STABILITY OF ARCHES 
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ABSTRACT 

 
A cikk keretein belül körívalakú görbe rudak 

stabilitását vizsgáljuk, amennyiben a megtámasztás nem 
szimmetrikusan történik. A rúd az egyik végén csuklóval 
támasztott, a másik végén befalazott. Terhelése egy 
radiális irányú koncentrált erőből áll. A geometriailag 
nemlineáris mechanikai modell stabilitási egyenletei a 
virtuális munka elvből kerültek levezetésre, megoldásuk 
zárt alakban felírható. Az egyensúlyi utak 
feltérképezésével megállapítható a legkisebb limit ponti 
kritikus erő, ami a rúd stabilitásának elvesztéséhez 
vezethet. Az új modell eredményeit kereskedelmi 
végeselemes szoftver számításaival összevetve jó 
egyezést tapasztaltunk. 
 
 

1. INTRODUCTION 
 

     Arches are frequently utilized in various architectural 
designs, serving as essential elements in structures like 
roofs, bridges, and openings. Their distinctive curved 
shape offers several advantages, notably in distributing 
weight evenly and effectively managing mechanical 
loads. Nevertheless, when arches endure a compressive 
load, they can become prone to instability and it is crucial 
to account for the possibility of limit point buckling in 
arch design to guarantee structural stability and safety 
[1]. Buckling of arches has been widely studied, resulting 
in a rich body of literature that provides key insights into 
the stability of arch structures, from early research to 
present-day. According to certain numerical studies, 
including those by Yang & Shieh [2], Kuo & Yang [3], 
the position of the radial load may influence the nonlinear 
equilibrium and buckling load significantly. Numerous 
studies have primarily focused on the classical and 
nonlinear buckling of arches with symmetric boundary 
conditions, particularly those with pinned-pinned or 
fixed-fixed ends – see, e.g., [4–7]. Exact analytical 
solutions for limit point, bifurcation buckling, and post-
buckling behaviour of the shallow arches with symmetric 
boundary conditions under uniform radial and central 
concentrated loads have been investigated in details in 

the literature. Recent studies on arches with 
unsymmetrical end supports have revealed significant 
differences in their nonlinear behaviour compared to 
arches with symmetric conditions. Likewise, paper [8] 
examined the in-plane nonlinear stability of pinned-fixed 
shallow arches under arbitrary concentrated loads and 
found that these structures exhibit multiple stable and 
unstable equilibria, buckling through limit point 
instability rather than bifurcation. This contrasts with 
fixed-fixed or pinned-pinned arches, which may buckle 
in a bifurcation mode [5,7]. Nonlinear elastic analysis 
and buckling of pinned-fixed arches under uniformly 
distributed radial loads were also explored in [9]. In most 
articles, the effect of bending moment on the membrane 
strain is not incorporated, but it might be necessary to 
improve the model accuracy [10].  
    Overall, most studies assume identical end supports 
and overlook the impact of bending moments on 
membrane strain when analyzing the buckling behaviour 
of arches. Therefore, further investigation into the 
stability of such members is needed to provide a more 
comprehensive understanding of their buckling 
behaviour. This article focuses on the in-plane buckling 
of homogeneous fixed-pinned shallow arches under 
radial concentrated load. The equilibrium equations are 
derived using the principle of virtual work, with account 
on the bending moment's effect on membrane strain. The 
equations are solved in closed form. The novel model 
introduced can identify the limit points on the 
equilibrium path for a selected geometry, material and 
load position. The solutions are validated through 
comparisons with finite element simulations. 
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2. MECHANICAL MODEL 
 

Figure 1 The geometry, loading and support conditions 
of the one-dimensional model 

 
     We shall consider a fixed-pinned arch as it is shown 
in Figure 1. The cross-sectional coordinates are 𝜂𝜂; ζ and 
the axis ξ coincides with the circumferential direction. 
The length of the arch is S, the included angle is 2𝜃𝜃, the 
initial radius of curvature is 𝑅𝑅, and 𝜑𝜑 and 𝑠𝑠 are the angle 
and arc coordinates. The load is applied at the angle 
coordinate 𝛼𝛼 = [−𝜃𝜃; 𝜃𝜃]. If 𝛼𝛼 = 0, it is a limit case with 
the load being at the symmetry axis of the arch. It is 
assumed that the behaviour of the material is linearly 
elastic and isotropic. 
     The membrane strain at an arbitrary point on the 
centroidal axis (𝜁𝜁 = 0) is given as [11] 
 
 𝜀𝜀𝑚𝑚 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 + 𝑤𝑤
𝑅𝑅 + 1

2 (− 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 )2    .                                              (1) 

 
Where 𝑢𝑢 and 𝑤𝑤 are the axial and radial centroidal axis 
displacements respectively, the nonlinear term (− 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 )2 is 
introduced to account for rotations and it contributes as 
the cause of nonlinearity. The axial force N and the 
bending moment M can be represented as follows [10] 
using the Hooke law: 
 
𝑁𝑁 = 𝐴𝐴𝑒𝑒𝜀𝜀𝑚𝑚 − 𝐼𝐼𝑒𝑒

𝑅𝑅 ( 𝑑𝑑𝑑𝑑
𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑑𝑑2𝑤𝑤

𝑑𝑑𝑑𝑑2 ),                                            (2) 
 
𝑀𝑀 = −𝐼𝐼𝑒𝑒 (𝑑𝑑2𝑤𝑤

𝑑𝑑2𝑠𝑠 + 𝑤𝑤
𝑅𝑅2) ,   𝑁𝑁 = 𝐴𝐴𝑒𝑒𝜀𝜀𝑚𝑚 − 𝑀𝑀

𝑅𝑅                          (3) 
 
with 𝐼𝐼𝑒𝑒  as the E-weighted moment of inertia to major 
principal axis 𝜂𝜂 and and 𝐴𝐴𝑒𝑒 as the E-weighted area of the 
cross-section: 
 
𝐼𝐼𝑒𝑒 = ∫ 𝐸𝐸𝜁𝜁2𝑑𝑑𝑑𝑑 ,              𝐴𝐴𝑒𝑒 = ∫ 𝐸𝐸𝐴𝐴 d𝐴𝐴.                             (4) 
 
Using the principle of virtual work, the nonlinear pre-
buckling equilibrium configuration can be established. 

For mathematical simplification, we now introduce 𝑊𝑊 =
𝑤𝑤
𝑅𝑅   and 𝑈𝑈 = 𝑢𝑢

𝑅𝑅 that are dimensionless normal and 
circumferential displacements. Using fundamental 
equations (1)–(4), the following equilibrium equations 
can be found [7]: 
 
𝜀𝜀𝑚𝑚

′ = 0,   𝑊𝑊′′′ + (ϗ2 + 1)𝑊𝑊′′ + ϗ2𝑊𝑊 = ϗ2 − 1         (5) 
 
with 𝑑𝑑(⬚)

𝑑𝑑𝑑𝑑 = (⬚)′ ,     
 
 ϗ2 = 1 − 𝜇𝜇𝜀𝜀𝑚𝑚  , 𝜇𝜇 = 𝐴𝐴𝑒𝑒.𝑅𝑅2

𝐼𝐼𝑒𝑒
= 𝑅𝑅2

𝑟𝑟2 , 𝜆𝜆 = √𝜇𝜇 Ѳ2 = 𝑆𝑆2

4𝑟𝑟𝑟𝑟       (6) 
 
In which 𝜆𝜆 is the slenderness parameter of the arch [11] 
and 𝑟𝑟 is the radius of gyration of the cross section about 
its major principal axis 𝜂𝜂. The boundary and 
discontinuity conditions for the considered arch are as 
follows: 
 
𝑊𝑊|𝜑𝜑=−𝜃𝜃 = 𝑊𝑊′|𝜑𝜑=−𝜃𝜃 = 𝑊𝑊|𝜑𝜑=𝜃𝜃 = 𝑊𝑊′′|𝜑𝜑=𝜃𝜃 = 0, 
𝑊𝑊|𝜑𝜑=−𝛼𝛼. = 𝑊𝑊|𝜑𝜑=+𝛼𝛼  ;   𝑊𝑊′|𝜑𝜑=−𝛼𝛼 = 𝑊𝑊′|𝜑𝜑=+𝛼𝛼   , 
𝑊𝑊′′|𝜑𝜑=−𝛼𝛼 = 𝑊𝑊′′|𝜑𝜑=+𝛼𝛼  , −𝑊𝑊′′′|𝜑𝜑=−𝛼𝛼 + 𝑊𝑊′′′|𝜑𝜑=+𝛼𝛼 =
− 2𝑄𝑄

𝜃𝜃 .                             (7) 
 
Here Q is a dimensionless load defined by  
 
𝑄𝑄 = 𝑞𝑞𝑅𝑅2𝜃𝜃

2𝐼𝐼𝑒𝑒
.                                                                     (8) 

 
When we focus, example, on that arch part which is on 
the right side of the load position (𝜑𝜑 ∈ [𝛼𝛼, Ѳ]), the 
general solution satisfying Eq (5)2 is  
 
𝑊𝑊𝑟𝑟(𝜑𝜑) = ϗ2−1

ϗ2 + 𝐴𝐴1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) + 𝐴𝐴2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑) −
𝐴𝐴3
ϗ2 𝑐𝑐𝑐𝑐𝑐𝑐(ϗ𝜑𝜑) − 𝐴𝐴4

ϗ2 𝑠𝑠𝑠𝑠𝑠𝑠(ϗ𝜑𝜑).                                               (9) 
 
The constants Ai can be found by recalling boundary and 
discontinuity conditions (7).  
Since the membrane strain is constant, a nonlinear 
relationship can be set as 
 
∫ 𝜀𝜀𝑚𝑚(𝜑𝜑)𝑑𝑑𝑑𝑑Ѳ

−Ѳ ≃ ∫ [𝑈𝑈′ + 𝑊𝑊 + 0.5(𝑊𝑊′)2]𝑑𝑑𝑑𝑑 −Ѳ
−Ѳ

2𝜇𝜇𝜀𝜀𝑚𝑚 = 𝐵𝐵1 𝑄𝑄2 + 𝐵𝐵2𝑄𝑄 + 𝐵𝐵3.                                      (10) 
 
The constants 𝐵𝐵1, 𝐵𝐵2 and 𝐵𝐵3 -- which are functions of 𝛼𝛼, 
𝜃𝜃, λ and μ -- can be calculated in closed form based on 
their definitions. Evaluation of Eq. (10) makes it possible 
to find the equilibrium path of the arch and thus, the limit 
points which are related to buckling. 
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3. COMPUTATIONAL RESULTS 
 

Figure 2 Lowest critical load in terms of 𝜃𝜃 
 
    Figure 2 depicts the relationship between 
dimensionless buckling loads and the semi-vertex angle 
𝜃𝜃 for three various load positions. The results reveal that 
when the load position factor is negative, the critical load 
increases as 𝜃𝜃 increases, indicating that arches with 
greater 𝜃𝜃 can sustain higher loads. Conversely, for a 
strictly positive load position factor, the critical load 
initially rises but begins to decrease once 𝜃𝜃 approaches 
to approximately 0.81 rad. Additionally, when the load is 
applied between the crown and the fixed end, the 
buckling load is significantly higher compared to when 
the load is located between the crown and the pinned end. 
The plotted curves also shift leftward as the load position 
factor 𝛼𝛼/𝜃𝜃 transitions from positive to negative, meaning 
buckling may occur at smaller included angles. The 
difference in critical load is substantial, with the relative 
change between 𝛼𝛼/𝜃𝜃 = −0.2 and 𝛼𝛼/𝜃𝜃 = 0.2 ranging 
between 30.8% and 35.14%. It is important to note that, 
under the considered geometric parameters and these 
load positions, the critical buckling load for pinned-fixed 
members consistently falls between the values for 
pinned-pinned [10] and fixed-fixed supports [5]. 
     The effects of the load position on the equilibrium 
path (number of limit points and nonlinear equilibrium 
branches) are illustrated in Figure 3 for three samples. 
The load position 𝛼𝛼/𝜃𝜃 clearly influences the nonlinear 
equilibrium and buckling behaviour of the arches. As the 
load position shifts from the left side of the arch crown 
(𝛼𝛼/𝜃𝜃 = −0.2) to the right (𝛼𝛼/𝜃𝜃 = 0 and 𝛼𝛼/𝜃𝜃 = 0.2 ), 
the number of limit points decreases from four (two 
upper limit points and two lower limit points) to two. 
Similarly, the equilibrium branches reduce from five (one 
primary stable branch, three unstable branches, and a 
remote stable branch) to three (two stable branches with 
an unstable branch between them).  
 
 
 
 

 
 

Figure 3 Load in terms of a dimensionless strain 𝜇𝜇 
 

 
4. FEM RESULTS 

 
    Table 1 presents a comparison between the proposed 
model and the results obtained with the commercial finite 
element (FEM) software Abaqus. For the FEM analysis, 
a one-dimensional B21 type element was employed for 
the discretization, with a total of 60 elements to map the 
arch. This number was found to be sufficient to ensure 
converged results. The Static/Riks step was utilized with 
nonlinear geometry enabled to trace the equilibrium 
paths. The first upper limit point of the equilibrium path 
is obtained when the force reaches its local maximum and 
then starts to decrease under load control. Accordingly, 
this maximum force is the lowest nonlinear buckling load 
sought. The cross-section used was a uniform, doubly 
symmetric I cross-section with an area of 4588 𝑚𝑚𝑚𝑚2 and 
a second moment of inertia being 54255295 𝑚𝑚𝑚𝑚4. The 
Young’s modulus was 210 GPa throughout, meaning 
homogeneous material distribution. As shown in Table 1, 
the correlation is really good between the two different 
approaches. 
 

Table 1 Validation of the results with FEM 
 Q (new model) FEM 

𝛼𝛼/𝜃𝜃 S/r=80, 𝜃𝜃 = 0.4 , 𝜆𝜆 = 16 

-0.2 6.03 
 

5.85 

0 5.65 
 

5.41 

0.2 4.01 3.90 

 
     Furthermore, Figures 4 and 5 illustrate the pre-
buckling shape of the arch when the critical buckling load 
in [N] is applied when 𝛼𝛼/𝜃𝜃 = −0.2 and 0.2, respectively. 
To determine the corresponding dimensionless loads in 
the above table, the definition of Eq. (8) was applied. 
 

 

 

2. MECHANICAL MODEL 
 

Figure 1 The geometry, loading and support conditions 
of the one-dimensional model 

 
     We shall consider a fixed-pinned arch as it is shown 
in Figure 1. The cross-sectional coordinates are 𝜂𝜂; ζ and 
the axis ξ coincides with the circumferential direction. 
The length of the arch is S, the included angle is 2𝜃𝜃, the 
initial radius of curvature is 𝑅𝑅, and 𝜑𝜑 and 𝑠𝑠 are the angle 
and arc coordinates. The load is applied at the angle 
coordinate 𝛼𝛼 = [−𝜃𝜃; 𝜃𝜃]. If 𝛼𝛼 = 0, it is a limit case with 
the load being at the symmetry axis of the arch. It is 
assumed that the behaviour of the material is linearly 
elastic and isotropic. 
     The membrane strain at an arbitrary point on the 
centroidal axis (𝜁𝜁 = 0) is given as [11] 
 
 𝜀𝜀𝑚𝑚 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 + 𝑤𝑤
𝑅𝑅 + 1

2 (− 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 )2    .                                              (1) 

 
Where 𝑢𝑢 and 𝑤𝑤 are the axial and radial centroidal axis 
displacements respectively, the nonlinear term (− 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 )2 is 
introduced to account for rotations and it contributes as 
the cause of nonlinearity. The axial force N and the 
bending moment M can be represented as follows [10] 
using the Hooke law: 
 
𝑁𝑁 = 𝐴𝐴𝑒𝑒𝜀𝜀𝑚𝑚 − 𝐼𝐼𝑒𝑒

𝑅𝑅 ( 𝑑𝑑𝑑𝑑
𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑑𝑑2𝑤𝑤

𝑑𝑑𝑑𝑑2 ),                                            (2) 
 
𝑀𝑀 = −𝐼𝐼𝑒𝑒 (𝑑𝑑2𝑤𝑤

𝑑𝑑2𝑠𝑠 + 𝑤𝑤
𝑅𝑅2) ,   𝑁𝑁 = 𝐴𝐴𝑒𝑒𝜀𝜀𝑚𝑚 − 𝑀𝑀

𝑅𝑅                          (3) 
 
with 𝐼𝐼𝑒𝑒  as the E-weighted moment of inertia to major 
principal axis 𝜂𝜂 and and 𝐴𝐴𝑒𝑒 as the E-weighted area of the 
cross-section: 
 
𝐼𝐼𝑒𝑒 = ∫ 𝐸𝐸𝜁𝜁2𝑑𝑑𝑑𝑑 ,              𝐴𝐴𝑒𝑒 = ∫ 𝐸𝐸𝐴𝐴 d𝐴𝐴.                             (4) 
 
Using the principle of virtual work, the nonlinear pre-
buckling equilibrium configuration can be established. 

For mathematical simplification, we now introduce 𝑊𝑊 =
𝑤𝑤
𝑅𝑅   and 𝑈𝑈 = 𝑢𝑢

𝑅𝑅 that are dimensionless normal and 
circumferential displacements. Using fundamental 
equations (1)–(4), the following equilibrium equations 
can be found [7]: 
 
𝜀𝜀𝑚𝑚

′ = 0,   𝑊𝑊′′′ + (ϗ2 + 1)𝑊𝑊′′ + ϗ2𝑊𝑊 = ϗ2 − 1         (5) 
 
with 𝑑𝑑(⬚)

𝑑𝑑𝑑𝑑 = (⬚)′ ,     
 
 ϗ2 = 1 − 𝜇𝜇𝜀𝜀𝑚𝑚  , 𝜇𝜇 = 𝐴𝐴𝑒𝑒.𝑅𝑅2

𝐼𝐼𝑒𝑒
= 𝑅𝑅2

𝑟𝑟2 , 𝜆𝜆 = √𝜇𝜇 Ѳ2 = 𝑆𝑆2

4𝑟𝑟𝑟𝑟       (6) 
 
In which 𝜆𝜆 is the slenderness parameter of the arch [11] 
and 𝑟𝑟 is the radius of gyration of the cross section about 
its major principal axis 𝜂𝜂. The boundary and 
discontinuity conditions for the considered arch are as 
follows: 
 
𝑊𝑊|𝜑𝜑=−𝜃𝜃 = 𝑊𝑊′|𝜑𝜑=−𝜃𝜃 = 𝑊𝑊|𝜑𝜑=𝜃𝜃 = 𝑊𝑊′′|𝜑𝜑=𝜃𝜃 = 0, 
𝑊𝑊|𝜑𝜑=−𝛼𝛼. = 𝑊𝑊|𝜑𝜑=+𝛼𝛼  ;   𝑊𝑊′|𝜑𝜑=−𝛼𝛼 = 𝑊𝑊′|𝜑𝜑=+𝛼𝛼   , 
𝑊𝑊′′|𝜑𝜑=−𝛼𝛼 = 𝑊𝑊′′|𝜑𝜑=+𝛼𝛼  , −𝑊𝑊′′′|𝜑𝜑=−𝛼𝛼 + 𝑊𝑊′′′|𝜑𝜑=+𝛼𝛼 =
− 2𝑄𝑄

𝜃𝜃 .                             (7) 
 
Here Q is a dimensionless load defined by  
 
𝑄𝑄 = 𝑞𝑞𝑅𝑅2𝜃𝜃

2𝐼𝐼𝑒𝑒
.                                                                     (8) 

 
When we focus, example, on that arch part which is on 
the right side of the load position (𝜑𝜑 ∈ [𝛼𝛼, Ѳ]), the 
general solution satisfying Eq (5)2 is  
 
𝑊𝑊𝑟𝑟(𝜑𝜑) = ϗ2−1

ϗ2 + 𝐴𝐴1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) + 𝐴𝐴2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑) −
𝐴𝐴3
ϗ2 𝑐𝑐𝑐𝑐𝑐𝑐(ϗ𝜑𝜑) − 𝐴𝐴4

ϗ2 𝑠𝑠𝑠𝑠𝑠𝑠(ϗ𝜑𝜑).                                               (9) 
 
The constants Ai can be found by recalling boundary and 
discontinuity conditions (7).  
Since the membrane strain is constant, a nonlinear 
relationship can be set as 
 
∫ 𝜀𝜀𝑚𝑚(𝜑𝜑)𝑑𝑑𝑑𝑑Ѳ

−Ѳ ≃ ∫ [𝑈𝑈′ + 𝑊𝑊 + 0.5(𝑊𝑊′)2]𝑑𝑑𝑑𝑑 −Ѳ
−Ѳ

2𝜇𝜇𝜀𝜀𝑚𝑚 = 𝐵𝐵1 𝑄𝑄2 + 𝐵𝐵2𝑄𝑄 + 𝐵𝐵3.                                      (10) 
 
The constants 𝐵𝐵1, 𝐵𝐵2 and 𝐵𝐵3 -- which are functions of 𝛼𝛼, 
𝜃𝜃, λ and μ -- can be calculated in closed form based on 
their definitions. Evaluation of Eq. (10) makes it possible 
to find the equilibrium path of the arch and thus, the limit 
points which are related to buckling. 
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Figure 4 Critical load when 𝛼𝛼/𝜃𝜃 = −0.2 

 

 
Figure 5 Critical load when 𝛼𝛼/𝜃𝜃 = 0.2 

 
 

5. SUMMARY 
 

    This article investigates the stability and in-plane 
behaviour of fixed-pinned shallow circular arches using 
a one-dimensional beam model based on the Euler-
Bernoulli theory. It turns out that not only the geometry 
but also the load position affects significantly the lowest 
buckling loads. The equilibrium path also strongly 
depends on these factors. Comparative studies with finite 
element analyses validate the accuracy of the model. 
 
 
 

6. REFERENCES 
 
[1] TIMOSHENKO S. P., GERE J. M.: Theory of 

Elastic Stability. Engineering Societies 
Monographs, 1961. 

[2] YANG Y. B., SHIEH M. A.: Solution method for 
nonlinear problems with multiple critical points”, 
AIAA Journal 28(12), (1990), 2110–2116. 

    https://doi.org/10.2514/3.10529 

[3] KUO S. R., YANG Y. B.: Tracing postbuckling 
paths of structures containing multi loop. 
International Journal of Numerical Methods in 
Engineering 38(23), (1995), 4053–4075. 
https://doi.org/10.1002/nme.1620382309 

[4] BRADFORD M. A., UY B., PI  Y.-L.: In-plane  
elastic  stability  of  arches  under  a  central 
concentrated load. Journal of Engineering 
Mechanics, 128 (7), (2006), 710-719. 
 https://doi.org/10.1061/(ASCE)0733 
9399(2002)128:7(710) 

 

[5] PI Y.-L., BRADFORD M. A., LIU A.: Nonlinear 
equilibrium and buckling of fixed shallow arches 
subjected to an arbitrary radial concentrated load. 
International Journal of Structural Stability and 
Dynamics 17(8), (2017). Art. No. 1750082. 
https://doi.org/10.1142/S0219455417500821 

[6] MESSAOUDI A., KISS L. P.: Investigation on the 
limit-point buckling of curved beams. 
Multidiszciplináris Tudományok (Multidisciplinary 
Sciences), 13 (2), (2023), 78–86.  
https://doi.org/10.35925/j.multi.2023.2.7 

[7] KISS L. P.: Nonlinear stability analysis of FGM 
shallow arches under an arbitrary concentrated 
radial force. International Journal of Mechanics 
and Materials in Design, 16 (2020), 91-108. 
https://doi.org/10.1007/s10999-019-09460-2 

[8] LIU A., BRADFORD M. A., PI Y.-L.: In-plane 
nonlinear multiple equilibria and switches of 
equilibria of pinned–fixed arches under an arbitrary 
radial concentrated load. Archives of Applied 
Mechanics 87, (2017), 1909–1928. 
https://doi.org/10.1007/s00419-017-1300-7 

[9] PI Y.-L., BRADFORD M. A.: Nonlinear elastic 
analysis and buckling of pinned–fixed arches. 
International Journal of Mechanical Sciences 68 
(2013),212–223. 
https://doi.org/10.1016/j.ijmecsci.2013.01.018 

[10] KISS L., SZEIDL G.: Nonlinear in-plane stability 
of heterogeneous curved beams under a 
concentrated radial load at the crown point. 
Technische Mechanik. 35(1), (2015), 1–30. 
https://doi.org/10.24352/UB.OVGU-2017-066 

[11] BRADFORD M. A., UY B., PI Y.-L.: In-plane 
stability of arches. International Journal of Solids 
and Structures, 39 (1), (2002), 105-125.  
https://doi.org/10.1016/S0020-7683(01)00209-8 

 

GÉP, LXXV. évfolyam, 2024.72 3-4. SZÁM


